
A Chunk Streaming System For
An Open World Game
Charlie Evans
18009251

University of the West of England

April 10, 2022

A n open-world streaming system for loading and
unloading chunks from disk at run-time based

on distance. A simple LOD systemwas implemented
with the trees, and a navigationmeshwas generated
on a per-chunk basis; with JsonUtility utilised to
save chunk data to file. Chunk loading alone was
found to take up 80 percent of the CPU process.

1 Introduction

Open-world games boast huge worlds for the player
to explore, generally offering a non-linear approach so
objectives can be undertaken as the player sees fit. For
the game to be able to handle such large and populated
worlds a streaming system is needed to ensure that only
the entities located around the player are streamed in
at run-time. Typically the world is divided up into
chunks and only the chunks close to the player are
loaded and chunks that are too far are unloaded from
memory. By doing this the game can achieve more
streamlined performance and provide the player with
the illusion of a living and breathing world around
them.

2 Related Work

A GDC talk from Ruskin, 2015 discusses the stream-
ing technology used in the game Sunset Overdrive; an
open-world, action-adventure game produced by In-
somniac Games. The world was divided up into hexag-
onal chunks using hexagonal tessellation as shown in
figure 1.

Figure 1: Hexagonal Chunk Loading In Sunset Overdrive

Only the hex the player is standing on, as well the
hexes connected to it, are loaded. When the player
moves to a adjacent hex, the adjacent hexes of the new
hex are loaded, and the adjacent ones before it are
unloaded. As the player can fall faster than the world
is capable of being streamed the chunks are streamed
on a side to side basis. Their attempt at a streaming
system was far from a reliable solution made evident
by the reveal that safety platforms were hidden inside
the buildings at all possible player spawn locations just
in case a building weren’t to load in in time.

In a thesis written by Juan Pérez, 2016 the strategy
employed for writing chunk data to file was to have a
XML file for each cell rather than having one big file
representing all the cells. Each file contains informa-
tion on any entities in that cell such as their positions,
texture, size and other such data. This approach is the
inspiration for this project whereby each chunk will
have it’s own data file named by it’s row and column
position in the terrain. The file will contain data on ob-
jects found in the chunk including it’s mesh, material,
and position.



A Chunk Streaming System For An Open World Game

3 Method

3.1 Mesh Generation

Creating the terrain involved passing in a series of
serialised parameters such as the height map, material,
and the width and height of the terrain before each
chunk mesh can be generated. A chunk is a segment
of the terrain which makes loading and unloading of
assets more manageable. A list of vertices was made
and iterated through which are offset by the height
values found in each pixel of the heightmap to produce
the terrain mesh from the heightmap. This process was
streamlined through the use of a custom editor tool.

3.1.1 Editor Tools

Figure2 shows the simple editor tool that was made
for generating and chunking terrain meshes. A terrain
can be generated after passing in the width and height,
chunk size, a heightmap and the terrain material.

Figure 2: The terrain editor tool.

Once a terrain has been generated into the scene the
terrain can then be saved to file with the save button. A
tool for spawning objects is also included that uses ray
casting to instantiate a chosen prefab onto the terrain
upon a mouse click which is then assigned to the chunk
that was clicked. Upon saving, the chunk objects will
also be saved. Finally, there is also an option for baking
a navigation mesh that the zombie ai uses.
Although not implemented within this project ray

casting could also be used to procedurally generate
trees at run-time on the terrain rather that methodically
spawning or placing them by hand.

3.2 Saving To File

JsonUtility was used in conjunction with the File class
to provide a simple way of saving data to disk. The
functionality for saving data is handled with a ’Save-
Manager’ script. A ’ChunkData’ class was made that
modelled the chunk data that was needed for the json
file, with public properties such as the name, position,
mesh and material of the chunk as well the chunk
objects belonging to that chunk. Figure 3 shows the
chunk json data.

Figure 3: Example format of a chunk json file.

1 ChunkData chunkData = JsonUtility.
FromJson <ChunkData >(File.
ReadAllText(path));

The code snippet above shows the model being
passed as a template type to the static method ’FromJ-
son’, provided by JsonUtility, to create an object from
its Json representation which is being read from file.

1 jsonFile = JsonUtility.ToJson(
chunkData , true);

2
3 string path = Application.dataPath

+ "/SaveData/ChunkData/" + chunk.
name + ".json";

4 File.WriteAllText(path , jsonFile);

In this next code snippet the ’chunkData’ object is
passed as an argument to the ToJson method where
it is converted to json format; with the true boolean
there to format the json representation to make it more

Page 2 of 5



A Chunk Streaming System For An Open World Game

readable. This json data is stored in the ’jsonFile’ string
which is passed as a parameter to the WriteAllText
method alongside a file path in order to write the data
to disk.
A separate data structure was modelled for the npc

data as the chunk data files were beginning to become
quite large. By abstracting the npc data to it’s own file
it made the data much easier to work with and locate.
This model contained similar properties to the chunk
model, however it also contained information on any
quest data that a npc may have should that npc have a
quest. Figure 4 shows the format of this npc data as it
is represented in json.

Figure 4: Example format of a npc json file.

3.3 Loading and Unloading of Chunks

After a chunk’s data has been gathered and written to
file all of it’s components besides it’s transform compo-
nent are destroyed when the chunk is unloaded; this
also includes any scripts that the chunk may have and
the chunk’s navigation mesh data.

Figure 5: Components being destroyed upon unloading.

This leaves only an empty transform with a reference
to the chunk that used to be there. When the chunk is
loaded back, all of the components it used to possess
are added back and the data relevant to that chunk is
read back from file and applied accordingly.
Deciding which chunks should load and unload in-

volved calculating the distance between each chunk
and the player as demonstrated in figure 6. Should the
distance exceed a specified distance and the chunk is
loaded then the chunk is unloaded from memory. If
the distance is less than a specified threshold and the
chunk is currently unloaded then the chunk is loaded

in memory. A layer of fog was also added so that the
distance at which chunks could be unloaded could be
decreased.

Figure 6: Chunk Loading Script.

3.3.1 Chunk objects

Chunks maintain a list of chunk objects such as trees,
bushes or houses. As a chunk is loaded or unloaded
from disk it’s chunk objects are iterated through as
well, destroying or adding components for each chunk
object listed.

Npcs are motionless ai that can contain a quest com-
ponent as seen in figure 7 that holds data on the quest
name, quest type, reward points, stats and completion
status.

Figure 7: The quest component attached to each npc

When a npc is unloaded, the state of the quest data
for a npc at the point at which the chunk was unloaded
is written to file and then loaded in from disk again
when that chunk is re-loaded.

Zombies are spawned through enemy spawners
which are tied to chunks, however the zombies them-
selves are dynamic objects in that they do not belong
to any one chunk. Because of this they can path-find
through chunks even if the chunk they spawned on has
been unloaded. When moving to a new chunk they are
removed from their previous chunk and added to their
new chunks list of chunk objects.

3.3.2 LOD

A simple LOD system was implemented for the trees
which involves swapping out the tree model with less
detailed ones with fewer vertices.

Page 3 of 5



A Chunk Streaming System For An Open World Game

Figure 8: Tree LODS of varying levels of detail

Each tree has a custom LOD script which takes three
different level of detail meshes as serialised parameters.
The trees will cycle through these simpler meshes de-
pending on the how far away the player is before fully
unloading when the chunk unloads. Figure 9 shows
the LOD component.

Figure 9: The LOD component attached to each tree

3.3.3 Navigation Mesh

Figure 10: The terrain nav mesh

Rather than generating one big navigationmesh a small
optimisation was made in which each chunk was as-
signed a navigation mesh surface component. These
components then baked a navigation mesh for each in-
dividual chunk when loaded and deleted the navigation
mesh data upon the chunk unloading as the naviga-
tion mesh isn’t needed to be baked in areas where the
player isn’t.

4 Evaluation

The chunk loading as it is currently loops through each
chunk and performs a distance calculation. A more op-
timal solution would be to only check and load chunks
that are adjacent to the player’s chunk, such as how
Ruskin, 2015 discusses in his GDC talk on Sunset Over-
drive’s streaming technology.

Furthermore, it was unnecessary to check the
player’s position every frame in update. By using the
’InvokeRepeating’ method, the distance check method
could instead be called at select intervals.

Figure 11: Profiler results of chunk loading in the update
method.

Figure 12: Profiler results of chunk loading with the ’Invok-
eRepeating’ method

Figure 11 and figure 12 show the difference in per-
formance between both methods. The second method
appeared to have performed 5.21 milliseconds faster
every frame than the former method. Interestingly,
around 80 percent of CPU time is spent on perform-
ing this function call alone, regardless of the method
used. This makes sense as disk reading and writing
is a performance heavy task as indicated in figure 13
below, where spikes and frame drops occur when disk
reading and writing operations happen.

Page 4 of 5



A Chunk Streaming System For An Open World Game

Figure 13: Profiler 2.1.

When loading a chunk the chunk data for that file
must be read from disk which can result in a slight but
noticeable bottleneck which is perceived as a freeze
for a few frames by the player. This is not optimal in
the long run especially if more chunk objects were to
be added and more data is required to be read from
disk. Juan Pérez, 2016 discusses a method of mitigat-
ing this by utilising another thread. This new thread
would handle any disk reading operations and allow
the main thread to focus on more important tasks such
as rendering.

5 Conclusion

Overall the project has been a success. A open-world
streaming system has been built that is showcased
within a simple game. A working LOD system is present
that is utilised by the trees. However for optimal per-
formance the disk saving process should be handled
on another thread. The save system works well but
became quite messy by the end of the project as more
functionality was added, so there is still room for ab-
straction.

Figure 14: The final product.

Figure 15: Chunks being streamed in and unloaded from disk.

6 Appendix

Video Log 1: https://youtu.be/GOreetdpaUE
Video Log 2: https://youtu.be/kx1tO-_tk0U
Video Log 3: https://youtu.be/axXEuLii1Po
Video Log 4: https://youtu.be/ix3yvOgGnmU
Video Log 5: https://youtu.be/f0-r7f2Hunw

Bibliography

Juan Pérez, Alejandro (2016). “Open World Stream-
ing:Automatic memory management in open world
games without loading screens”. PhD thesis. Univer-
sitat Politècnica de València.

Ruskin, Elan (2015). “Streaming in Sunset Overdrive’s
Open World”. In.

Page 5 of 5

https://youtu.be/GOreetdpaUE
https://youtu.be/kx1tO-_tk0U
https://youtu.be/axXEuLii1Po
https://youtu.be/ix3yvOgGnmU
https://youtu.be/f0-r7f2Hunw

	Introduction
	Related Work
	Method
	Mesh Generation
	Editor Tools

	Saving To File
	Loading and Unloading of Chunks
	Chunk objects
	LOD
	Navigation Mesh


	Evaluation
	Conclusion
	Appendix

