
2021/22

Comprehensive Creative Technologies Project:

A Dynamic Director Ai System for

Shooter and Survival Games

Charlie Evans
charlie6.evans@live.uwe.ac.uk
Supervisor: James Huxtable

Department of Computer Science and Creative Technology
University of the West of England
Coldharbour Lane
Bristol BS16 1QY

Abstract

A Director Ai system built for use within shooter and survival games. The aim was to provide a generic
system for designers to define their own rules and dictate the behaviour of the Director according to their
own needs. The Rule Pattern was utilised to craft two simple rule engines, one for handling how the
Director perceives the player’s intensity and the other for handling it’s behaviour. The project was
successful in allowing a designer to craft rules for each genre, and providing a range of options for
customising the director and active area set.

mailto:my.email@live.uwe.ac.uk
mailto:my.email@live.uwe.ac.uk

2021/22

Charlie Evans 18009251

2

Keywords: director, ai, ai director, system, rule base, rules engine, rule pattern, rules

2021/22

Charlie Evans 18009251

3

Brief biography

Interest for this project came from my love of the Left 4 Dead series and how the series never fails to
entertain; with the game boasting so much replayability. After discovering it’s Ai Director, I was curious as
to whether such a system could be applied to other genres of games to produce interesting gameplay and
good replay value.

Online portfolio: https://charlie2099.github.io/

How to access the project

Github repository: https://github.com/charlie2099/Director-Ai-For-Survival-and-Shooter-Games

The ReadMe located in the above repository details instructions on how to run the project.

Final video: https://youtu.be/Y1wvqfNqyqQ

1. Introduction

Maintaining player engagement and interest in a
game is a goal all game designers endeavour to
achieve and is one of the most fundamental
aspects contributing towards the player’s
experience. Challenge is an important factor
towards accomplishing this. “When there is
nothing at stake, and if completing something is
too hard, respondents do not want to keep
playing” (Schoenau-fog, 2011, p.11). Challenge
can induce the concept of flow, which can occur
when “a person skills are fully involved in
overcoming a challenge that is just about
manageable” (Csikszentmihalyi, 1997, p.2).
Thus, acting as a “magnet for learning new skills
and increasing challenges” (Csikszentmihalyi,
1997, p.2). If a person is in a state of flow, then
inevitably it suggests they must be fully engaged
with an activity.

Turtle Rock’s answer to this was with their ‘Ai
Director’, a system that was popularised within
their video game series Left 4 Dead, offering
plenty of challenge and replay-ability to players
(Turtle Rock, 2008). An Ai Director (or Director
Ai) at its core is a collection of systems all
working together seamlessly to provide a fresh
and novel experience for the player, making each
play session different from the last. It governs
how the pacing and drama is carried out during
the experience, and makes logical decisions of
when, where, and how events should unfold in
the game. It typically involves the director
analysing the performance of a player, deciding
when and where different enemies and items
should be deployed based on a perceived stress
or intensity level metric. The implementation of
such a system proved to be successful, however
it would be interesting to see how the system
would perform in games of a different genre.

This project intends to create a generic director
ai system for use within games of the action
games; of which the shooter and survival game
genres have been picked to conduct a feasibility
study on due to their high popularity and fun

game mechanics. These will be showcased in
action within a top-down 2D style game for both.
Unlike a specialised director ai system, this
system will have the versatility to enable the
system to be highly customisable regardless of if
the game is a shooter or survival game. It will
provide a system that will allow rules to be
created by the designer to dictate how the
director behaves; enabling designers to
streamline the process of controlling its
behaviour in an easy and versatile way.

The project deliverables are:

• Unity scenes for both the shooter and
survival game

• A Unity package

• A progress log

• A project timeline

The project objectives are to:

• Develop a system that allows for rules to
be created for both shooter and survival
games

• Provide a versatile and highly
customisable system that allows
designers to sculpt the director according
to their own needs

2. Literature review

The first piece of literature being reviewed was a
public communication in the form of presentation
slides presented by Booth (2009) during his 2009
Standford AIDE-og conference presentation. This
source of literature provided a wealth of
information, detailing the ai systems made for the
videogame Left 4 Dead (2008) and how they
contributed to the systems that make up the
game’s Ai Director; a system made for tailoring
the player’s experience to make it more
interesting. Using this resource for research,
tricky concepts could be much more easily

https://charlie2099.github.io/
https://github.com/charlie2099/Director-Ai-For-Survival-and-Shooter-Games
https://youtu.be/Y1wvqfNqyqQ

2021/22

Charlie Evans 18009251

4

grasped as concepts were broken down with visual
aids and bullet point lists noting the core ideas.

Two other influential pieces of literature to be
reviewed are papers Applying Goal-Oriented
Action Planning to Games and Three States and A
Plan: The A.I. of F.E.A.R, which describe a method
of handling character behaviour through a
simplified variant of what is essentially a finite
state machine. These papers bring to light the
inner workings of the GOAP system as
implemented within the videogame F.E.A.R
(2005) and help to establish a grounding for
improving the process of developing character
behaviours through technical breakdowns and a
discussion on context relevant case studies.

A further piece of literature was a blog by Ai and
Games (Thompson, 2020) discussing how
spreadsheets were employed in Watch Dogs 2
(2016) to create interesting and responsive
behaviour from its civilian ai. This piece of
literature was a useful resource as it provided a
conversational-like overview of the different
components and systems step by step whilst
remaining technical. Diagrams and images were
prevalent throughout which helped to visualise
how the systems worked, which is great for
learning new concepts than just reading pure text.
Additionally, this resource comes from Ai and
Game’s Tommy Thompson, a reputable source
when it comes to understanding the underlying
background theory behind the workings of ai
systems present in many types of games.

Another piece of literature to review is a blog titled
‘Towards a Rule-Based Game Engine’, which
discusses ideas for the creation of a rule-based
game engine that could accurately model rules
and provide a workflow for designers to design
games without the need for programmers (Pierce,
2011). Pierce unveils how games can be modelling
and broken down into three elements: nouns,
verbs, and rules. Nouns being elements such as
variables, players, NPCs, and items, and verbs
comprising the actions agents can perform such
as a jump or an attack action. This blog discussion
made a good resource for research, giving insight
into how rules can potentially be modelled and
processed by a system by generalising said rules
down so that a generic system can be made.

A final piece of literature to review is ‘An Efficient
Rule-Based Distribution Reasoning Framework for
Resource-bounded Systems’, a journal article by
Rakib and Uddin (2018). This was a particularly
important paper that explored rule-based
reasoning through a context aware systems
development framework which includes a
lightweight rule engine. Rakib et al. talk about how
a rule-based system is structured, comprising a
rule-base, inference engine, and working
memory; with the rule-base containing a set of

rules, working memory containing a set of facts
and the inference engine controlling the system
execution (Rakib, Uddin, 2018). The paper was
beneficial in drawing an understanding of rule-
based systems and their advantages, such as
being stored separate from the code.

3. Research questions

The following research questions have been
devised that will help drive the project forwards in
the right direction:

• Can a system be written that is generic enough
that rules for a shooter game and a survival game
can be processed by a single system?

• How can a system be designed in a way that the
process of creating rules is intuitive?

• Can a system be built to a standard that makes
it applicable for use in a professional setting?

4. Research methods

To go about answering the research questions
numerous research methods were deployed,
consisting primarily of secondary research sources
including journal articles, book chapters,
conference proceedings, public communications,
webpages and blogs. Journal articles and books
were well utilised resources in developing a
deeper and more in-depth understanding of the
difficult concepts and systems required to create
the director system. Papers were also selected
that detailed existing projects and studies
conducted that concerned rule-based systems and
rule processing, in answering the first question.

Blogs were also a useful and well-used resource,
providing a conversational-like and interesting
discussion on concepts whilst remaining technical
in nature. This enabled concepts to be grasped
much more easily than reading straight from a
book or textbook. Another much frequented
resource were conference proceedings and public
communications such as GDC talks, a series of
technical, in-depth talks from reputable speakers
in the game development industry. These were
particularly helpful in gauging an understanding of
technical concepts much like that of books and
journal articles without the need for having to rely
on reading to accumulate information.

Social networking websites and other social media
related platforms were not an employed source of
information due to the high potential for
information inaccuracy and bias. Any webpages
explored were carefully considered and fact
checked against other sources to ensure the
validity of the information given, and so was
utilised to a lesser extent to other sources.

2021/22

Charlie Evans 18009251

5

This secondary research was mostly qualitative
research as knowledge had to be acquired on new
concepts and theories that were not yet well
understood. Quantitative research was not
undertaken as formulating conclusions on any
numerical data gathered through surveys,
experiments or statistical data was unnecessary
for the purposes of the project.

Primary research methods were not used in
answering the proposed research questions due to
the nature of the project, as there is a great deal
of up-to-date existing research available which is
easily accessible and relevant to the subject area
and context. No new data was required to be
collected as the system intended to be produced
is built upon a system that already exists. The
time that would be required to carry out
interviewing, preparing questionaries and
analysing and collating results found through
primary research methods would be quite
substantial and would only be detrimental to this
project.

5. Ethical and professional principles

This project presents no ethical concerns as no
primary research methods were conducted that
would require participants to provide sensitive
data of any kind. All data input required is by the
director system from the designer, which is strictly
for game related purposes. The project will not
negatively impact any individual, group, or
community and instead it is hoped that it will
make a positive contribution to the field of game
design and help developers streamline their
development further.

6. Research findings

Booth discusses how an active area set, shown in
figure 1, can be used to restrict and handle entity
population and
destruction within the
confines of the
navigation areas around
the player as they move
through the
environment (Booth,
2009). Flow distance is
also used as a metric
described by Booth for
populating enemies and
loot in the environment
based on the “travel
distance from the
starting room to each
area in the navigation
mesh” (Booth, 2009).
Booth reveals how both tools contribute towards
generating structured unpredictability, an
important concept with the aim of promoting

replayability. From this it can be said that the
Director’s interesting and seemingly random
spawning of entities within the environment relies
on smart methods of dictating spawning based on
distance metrics.

A potential approach for recreating an Active Area
Set much like the one present within Left 4 Dead
(2008) could involve use of the object pooling
design pattern. This would deal with the re-use of
assets when an entity goes outside the bounds of
the active area. A metric for measuring the
distance between the player and game world
entities, as well as a predetermined bounds radius
specified by the designer, can be used to set the
size of the active area as well as dictating spawn
locations of these entities within the world.

Orkin (2006) disclosed how Goal-Oriented Action
Planning (GOAP) can be utilised to deliver real
time behaviour planning for enemy agents so that
more complex behaviour can emerge. GOAP is
described as a “decision-making architecture” that
enables agents to formulate plans in order to
satisfy their own goals (Orkin, 2006). This
approach to handling agent behaviour negates the
need for pre-determined behaviour which can
often be predictable and repetitive and decouples
goals from actions making any new goals or
actions easy to add. Following this approach will
offer adaptable behaviour to best suit the agent’s
situation. It is important to note that the constant
process of agents reformulating plans could
present a slight performance overhead, especially
when the project scales up. This could be
mitigated to some extent through the deployment
of the Active Area Set where entities will only exist
within the confines of the active navigation areas
surrounding the player.

A technique in which a director can craft an
interesting experience is by creating interesting
events and scenarios. In his blog discussing the
systems that Watch Dogs 2 (2016) uses to make
it’s civilian ai behaviour, Thompson (2020)
explains how attractor systems can be employed.
Attractors are special activities placed in the world
by the designers and are responsible for triggering
a response from non-player characters; or the
player themselves.

“Relying solely on the player to trigger in-world
events is risky, given that the rest of the world is
quite static and lifeless” (Thompson, 2020).
“Provocative agents” are then used with the intent
of provoking the attractor to trigger an event,
which helps to bring more life to the world. From
this research, an idea was formed for an
implementation of such an attractor system.
Attractors could be created by the designer with a
Unity editor tool, or generated by the director
itself, and then placed into the game world. These
attractors could then react to any agents

Fig 1: Left 4 Dead's Active

Area Set

2021/22

Charlie Evans 18009251

6

designated as ‘attractable’, making use of c-sharp
interfaces, and then trigger a change in the game
that could either benefit or detriment the player.

From the findings of Pierce’s (2013) blog on a rule-
based engine, the proposed system could
potentially feature a similar method for modelling
rules; defining three elements, nouns, verbs, and
rules that can be defined using Unity window
editor tools. This design will help contribute
towards the genericness of the intended system,
enabling designers to add rules as they please. As
well as this, tools could be designed as such that
designers can pick and choose features of the
director that they wish to include such as an active
area set or a series of attractors.

Later in the development of the project research
led to the discovery of the rule pattern. The rule
pattern is a popular design pattern utilised by
developers to help follow the principles of OCP,
as well as the Single Responsibility Principle
(SRP). By applying SRP, complicated rules can be
abstracted from the rules processing logic and
into their own rule classes. The rest of the
system remains unchanged, applying OCP, as
new rules are added.

Cyclomatic complexity is a quantitative measure
of the complexity of a program, indicating the
possible number of paths inside of a class or
function. Typically, a cyclomatic complexity of 10
or below is acceptable in the case of methods. By
using the rule pattern, the cyclomatic complexity
of a method can be dramatically reduced.

Fig 2: Diagram depicting the common rule pattern

structure

The typical structure of a rule pattern consists of
a rule interface, an evaluator, and the rule
classes themselves (see Fig 2).

This discovery led to a more informed
approached of how to implement the rule system
for this project. Rules for this type of system can
be abstracted into their own classes and make
the process of creating rules much more intuitive
for the designer.

7. Practice

7.1 Shooter and Survival Game Prototypes

Before creating the director, it was important
that the shooter and survival prototypes were
first setup to get a clearer vision of how the
Director could be built to help make it generic in
design.

7.1.1 Shooter Game

The first game prototype was a top-down 2D
shooter in a tiled environment. The premise of
the shooter game is to fight off hordes of
enemies whilst attempting to activate all the
generators.

7.1.2 Survival Game

The second and final game prototype was a top-
down 2D survival game, also made in a tiled
environment. The player needs to mine resources
and gather items to craft and purchase tools to
help survive the night. An inventory system was
built as well as some simple mechanics for
mining environment objects to obtain resources.

7.2 Director Design

The first step to building the director ai system
involved designing the core director class that
would manage all the systems that make up the
director. It was important that this class supplied
plentiful methods for grabbing state information
for the various systems, as well as providing
many options for customisability.

To monitor the performance of the player, the
director needed to have some knowledge of, and
therefore access to, player related data. Initially
a generic template character was setup that
included scripts for movement and camera
handling. However, this started taking the
project in another direction and into more of a
pre-built toolkit rather than dynamic adaptive
system. To rectify this the template character
was scrapped and instead only a generic player
script was made, ‘PlayerTemplate’,which was left
to be modified by the designer as they wished.
After the user attaches the script to their player
character, the script could then be fed into the
system through a serialised field in the director
script’s inspector view.

One potential drawback of this design however
was that if a designer didn’t want to use the
template class and instead wanted to use their
own class, then the designer would have to go
and refactor any methods that had
‘PlayerTemplate’ as a parameter. This however
was perceived to be of minimal concern as none
of the methods make use of the argument by
default as this is down to the designer when they
configure their rules. Therefore, only a simple
refactor would be necessary.

2021/22

Charlie Evans 18009251

7

A central feature of the director is its intensity
phase cycle. The director cycles through different
phases of intensity which orchestrate how the
drama unfolds. These states typically include a
build-up, peak, declining peak, and a relax
phase. The names chosen for this
implementation were build-up, peak, peakfade,
and respite.

These intensity states were defined in their own
class for better code readability, providing getter
methods for variables relating to the duration for
each of the states. These were then serialised to
allow easy modification for the designer.

Fig 3: Inspector view of the director script

Further options were provided to the designer
through serialised fields in the inspector (see Fig
3). The designer can modify the default duration
of the peak and respite phase as well as the
default maximum population for each. The
reason these are referred to as default is due to
the potential for these values to be changed by
the Director depending on the rules the designer
may create for it. The threshold for when the
intensity has peaked is also modifiable.

7.3 Active Area Set

One of the core systems that makes up part of
the director is the Active Area Set (AAS). As
previously covered, the AAS defines the active
navigation area in which enemies, items, and
events occur so that gameplay is contained only
within the areas surrounding the player.

To help the designer easily identify and define
the active area a line renderer component was
attached to the director game object to produce
a circular line using the following code (see Fig
4).

Fig 4: Math for configuring the Active Area circle

By serialising the radius variable, the designer
can specify how large they want the active area
to be from within the inspector.

Fig 5: Check for which tiles are designated as the

active tiles

Working off a given tile map, the distance from
each world tile to the player is checked to
determine the active tiles surrounding the player
(see Fig 5). If the tiles are within the radius of
the active area set but also outside of the
camera view radius, then the tile is added to a
list of active tiles. Enemies are then spawned into
a random tile from the active tiles list. Should
any enemies stray outside of the active they are
destroyed by the director and respawned to a
closer location to the player.

As enemies will only exist within the active area
set, it would be inefficient for a pathfinding
navigation grid to be generated for the entire
level. Making use of the Astar Pathfinding project
by Aron Granberg, a navigation grid was
implemented by assigning the provided
‘Pathfinder’ script to the director game object.
The pathfinding grid is then set to the size of
active area set at run-time. For some further
optimisation the navigation grid is rescanned in
intervals depending on the rate the designer has
specified, rather than every frame which would
induce major frame drops.

As well as enemies, the spawning of items should
also be dictated by the director. The designer
decides the spawn locations of items beforehand
and should parent these items inside of an empty
game object.

Fig 6: Item container list in the Director’s inspector

A list of game objects was serialised for the
designer to pass in a game object containing the
items as child objects (see Fig 6). The director
then iterates through each of the container’s
children and decides which items are active on
each play by enabling, or disabling, the child
object.

Now it was crucial that the intensity phase cycle
was tested. A generic rule was created inside the
director script that checked the distance of
enemies from the player, based on the player
object passed into the director by the designer.
The perceived intensity value increases by a
larger amount based on the closeness of an
enemy to the player.

7.4 Debugger

2021/22

Charlie Evans 18009251

8

To allow the designer to see information about
the current state, intensity, and enemy
population whilst debugging; a very simple ui
debugger was made. These variables are
exposed onto a user interface for the designer to
see the workings of the director in real-time.

7.5 Rule System

7.5.1 Iteration After the First Prototype

After showcasing the first prototype of the
project during the demo it was clear that some
big changes were needed. Supervisors provided
some very valuable feedback that led to the
eventual discovery of a new approach for
developing a rules system.

Beginning development on the new rule system a
new concept was discovered that led to a simpler
solution for implementing a rules system. This
concept was the Open-Closed Principle (OCP).
OCP is one of five design principles that make up
the SOLID principles, an idea promoted by
Robert C. Martin, that helps to make object-
oriented designs more maintainable and
understandable.

Meyer’s definition of OCP states that “classes and
methods should be open for extension but closed
for modification” (Meyer, 1997). This means
creating classes and methods whose behaviour
can be changed without having to recompile and
edit the code itself. This led to the discovery of
the rule engine design pattern.

7.5.2 Intensity Rule Engine

The Director uses perceived intensity as an
important metric for determining when to cycle
through each state. Because of this, it was
integral that the designer was able to define the
rules that dictated how intensity was measured.
First a rule interface was setup.

Fig 7: Interface class for the IDirectorIntensityRule

This interface acts a contract that says that all
rules that derive from the interface must inherit
its methods. The method for this interface
returns a float value which will be the intensity
output. The function also takes the Director as a
parameter that will allow designers easy access
to the director script’s methods when creating
rules.

Now that the rule interface was setup the first
rule could be created, which for simplicity was a

rule that checks if the player’s health is below a
value specified by the designer.

Fig 8: Intensity rule for checking the player's health

As seen in figure 8, the player’s health is
accessed through the GetPlayer method that the
Director possesses to have direct access to
crucial player data. If the condition is satisfied
the intensity value set by the designer is
returned, otherwise 0 is returned meaning that
there was no change in intensity.

For the rules to be processed a rule engine class
was needed. The DirectorIntensityRuleEngine
class was created for receiving a collection of
rules and evaluating them to produce an output.
The DirectorIntensityCalculator class was also
created so that the designer could add and
remove rules, deciding which rules would be
included in the evaluation.

Fig 9: The constructor of the intensity calculator

showing how rules can be added

Rules can be easily added by adding it to the list
of intensity rules in the rule calculator’s
constructor (as shown in Fig 9). The designer can
define constructor arguments which will allow
rules to be easily tweaked later in development if
necessary.

Fig 10: Constructor of the intensity rule engine that

takes in a rule collection

2021/22

Charlie Evans 18009251

9

Fig 11: Intensity rule engine method for evaluating

rules

Now that the rule had been added to the rule
collection, the rule needed to be evaluated and
processed to produce an output. Fig 11 shows
how rules are evaluated according to whichever
rule produces the highest intensity result. This
means that when the director is measuring the
intensity of the player it will increment, or
decrement, the intensity value by the amount
output by the rule system so that specific
activities demonstrate to the Director more
intense gameplay.

Fig 12: Intensity calculator method that uses the rule

engine to output the evaluated intensity output

Back in the rules calculator class an instance of
the rule engine was instantiated, passing in the
rules collection through its constructor argument
(see Fig 12). Finally, the rule engine’s method
was called to evaluate the given rules and
provide an output. This output was used to
calculate the perceived intensity (as seen in Fig
13) per a pre-set calculation rate that can be
defined by the designer.

Fig 13: The intensity metric using the intensity

calculator to determine its value

7.5.3 Behaviour Rule Engine

This rule system works well by itself for
determining when the director should switch to a
different intensity cycle, however at this point
there was no way for the designer to control how
the director behaved during these different
phases. To work alongside the intensity rule
engine a new rule engine was created, the
director behaviour rule engine. This second rules
system was setup in much the same way as the
first, although differed in how the rules were
evaluated by its rule engine.

Fig 14: Behaviour rule engine method for evaluating

rules

Unlike the intensity rule engine which outputs the
highest intensity value from any satisfied rules,
the behaviour rule engine outputs ALL rules
whose conditions are met (see Fig 14).

Fig 15: Rule that decides when a boss should be

spawned

This allows for the possibility of several rules
firing at once, that could pave the way for some
potentially interesting behaviour to occur.

7.5.4 Improving How Rules Are Added

Although the current process of adding rules is
straightforward, it requires the designer to touch
the rule calculator scripts directly so that they
can add in their rules. One solution to mitigate
this is by utilising reflection.

Fig 16: Example of reflection being used to add rules

automatically

As demonstrated in figure 16, reflection searches
the codebase for classes that inherit from the
behaviour rule interface but ignoring the
interface itself. It then automatically creates an
instance of each discovered rule. These rules are
then added to the collection. With this code in
place the designer no longer needs to be
conscious of forgetting to add their rule as it will
be automatically picked up by the system. The
drawback to this technique however is that the
rules should remain stateless. Although this can
be worked around, it is much tricker to configure
and is likely not worth the effort to do so. For
this reason, the code was left commented out in
case a use was found for it later in the
development of the project.

Unlike the intensity rule engine that is calculated
per the calculation rate defined by the designer,
the behaviour rule engine is calculated on an

2021/22

Charlie Evans 18009251

10

event basis. Every time the director switches to a
new intensity phase state an event is invoked.
This event is subscribed to and calls a method
that contains the call to the behaviour calculator
method.

7.5.5 Experimenting with Multiple Rules

With the rule system built it was now time to test
the system fully by introducing more rules.
Intensity rules for the shooter game were first
created. These included rules such as checking if
the player is idle, how low their health is, as well
as fast they are obtaining kills (see Fig 17).

Fig 17: Intensity rules for the shooter game

New rules for the director’s behaviour within the
shooter game were also devised. These included
rules for spawning bosses and items, as well as
how the player is progressing through objectives
and if they are on a killstreak (see Fig 18).

Fig 18: Behaviour rules for the shooter game

Fig 19: Intensity rules for the survival game

New intensity rules for the survival game were
also established (see Fig 19). Rules for this
consisted of similar distance and health checking
rules, along with the addition of unique rules
such as how many resources the player has or
how many consumables they have used.

The addition of these new rules began to shape
the director into something much more
interesting as playthroughs started to playout a
little differently from the last.

8. Discussion of outcomes

The original aims for the project were to develop
a highly customisable director ai that could be
adapted to accommodate to a designer’s needs
by allowing them to create their own rules. This
project has been successful in this regard. The
project was able to demonstrate that rules
manufactured by the designer for both shooter
and survival games were able to be processed by
a single system which achieved the primary goal
of the project.

In the beginning stages of development however,
the project saw major difficulties in creating a
rule system that could be considered generic.
After the submission of the prototype demo and
receiving valuable tutor feedback the project was
able to move forward with a clearer vision of
where to go next. From there the project was
able to see success as development on the rules
system began.

Some of the key successes from the project
include its easy rule creation system. Two rule
engines were constructed providing the director
as a context enabling rules to be defined with
ease. The creation of rules is also aided by the
methods defined within the designer’s player
class allowing rule classes easy access to player
state information. The inclusion of the rules
system meant that conditional logic related to
the director’s behaviour could be abstracted into
their own rule scripts, which makes the codebase
much more readable and easier to follow.

Another key success of the project was the
accessibility and capability of the Active Area Set.
Designers can pass in their own level tilemaps
and the Active Area Set will use this to define all
the possible spawn locations for enemies,
removing the need for the designer to have to
set each enemy’s spawn position themselves.
Enemy prefabs can be easily passed in and the
Active Area Set will randomly select which
enemies will spawn and will also spawn boss
enemies based on the rules defined by the
designer.

A limitation of the existing rules system is that it
requires designers to manually add their rules to
the rule calculator classes so that the rules are
used in the rule engine calculations. Two
potential solutions could be explored to fix this
limitation. The first would be to make use of
Reflection that would automatically pick up rule
scripts created by the designer, create an
instance of it, and then add it to the list of rules.

2021/22

Charlie Evans 18009251

11

Another alternative would be to design a user
interface that would interact with the rules
system engines and allow rules to be added and
removed through the interface. A benefit to this
method is that it could also provide the option for
enabling and disabling which rules are active.
Something that could have been done better is
introducing more rules to the survival game
prototype to better test the director and induce
more interesting behaviour. Unlike the shooter
game there was a lack of variety in the created
rules which.

A further way that the system could have been
improved is by introducing more ways of deciding
how rules are fired. In its current state rules are
fired in one of two ways. Intensity rules are fired
based on the highest intensity weighting output,
and behaviour rules are all fired in parallel. Some
alternative techniques of rule evaluation include
firing the first rule that matches, executing a
random rule, and firing rules in order: which can
be applied by using LINQ statements. A benefit
to using LINQ statements is its code readability
and optimisation, demonstrated by Weimann
who shows how code for finding the closest game
object to the player can be shortened down to a
single line of code (Weimann, 2017). However,
some consideration should be taken for the small
amount of garbage that they generate. Because
of this they should be avoided from being called
every frame in the update method (Weinmann,
2017).

A direction that the project would like to have
explored was into designing custom editor tools.
Although this was outside the scope of what was
required for the project, custom tools could
provide an alternative means of customising the
director system whether that be through rule
creation, or through populating the active area
set and director scripts with data. This would
benefit the developers by allowing them to
streamline the development of their director
system through a simple interface.

The design of the active area set system draws
similarities to the one implemented within the
Horror Ai Toolkit, a unity project built to help
developers manage the creation and behaviour of
their ai (Hickery, 2018). The active area set
implementation seen in the Horror Ai Toolkit also
makes use of a line renderer to visualise the
active area, of which is customisable in in the
unity inspector. A plethora of options are also
present in the inspector of its director script for
modifying the stress levels and behaviour of the
ai. Where this project excels in comparison to the
Horror Ai Toolkit however is in its deployment of
a rules system to manage intensity and
behaviour. The rules that affect how stress is
calculated is hardcoded directly into the director
script of the Horror Ai Toolkit. For example, it

features a hard coded rule for increasing stress
when the player is close to an enemy; a rule
which is extracted into its own
‘DistanceFromEnemy’ rule class within this
project. Furthermore, how the stress (or
intensity) is measured is entirely up to the
designer within this project’s implementation
which leaves more choice in the hands of the
designer.

Unfortunately, the extent of the director system
wasn’t fully explored within the survival game as
arguably too much focus and time was put into
developing the shooter game. The survival game
would have benefited from a more diverse set of
rules; however, this does not disprove the fact
that the system is capable of processing rules for
this genre. So long as the designer provides
methods for obtaining the relevant state data
relating to the game, rules can quite easily be
created for this genre. Where this project excels
is in how the project could be adapted to other
genres. A racing game for example may exhibit a
rule for increasing the intensity when another
racer is overtaking the player. This rule could
quite easily be adopted with the existing system.

A further omission from the project that was
intended to be employed was the attractor
system that was detailed in the research
findings. Further development on the project
would explore realising this feature, with the
existing system open to adaptation to this
addition due the way the active area set is
designed. The active area set could take in a
container filled with attractor game objects,
which have already been placed in the world by
the designer, and the director will pick which
ones are active on each play. The system would
need to be adapted a little further to allow the
attractors to interact with the director, perhaps
providing attractors built-in as part of the
director ai package. The attractors could then
interact with the director through unity Action
delegates which could call upon the behaviour
rule engine to provoke an event to occur.

This project would be more applicable to a
professional setting if more options were
provided for debugging the director. In its
current state it’s limited to displaying the current
state of the director on a simple ui overlay,
however, to make it more accessible to
developers’, alternative solutions should be
investigated. This could perhaps include an
automated unit testing system that could
automatically test rules that a designer creates
to check that they perform as they should. This
system could then output this information to the
designer to let them know if their rules have
passed the unit checks.

2021/22

Charlie Evans 18009251

12

9. Conclusion and recommendations

The director system that has been produced has
achieved success; delivering a simple but capable
system that enables designers to create their own
rules for the director in both shooter and survival
games. Furthermore, the system provides a whole
range of customisability that allows designers to
tweak parameters and metrics as they see fit,
tuning the director to their needs.

If the project were to be continued further, a
complete user interface should be built that would
allow a designer to add and remove rules with
ease. This would negate the need for designers to
have to enter the rule calculator scripts directly to
filter which rules were active and provide a clean
alterative to creating rules outside of the program.

Further work could also explore how the Active
Area Set could be optimised to include more
efficient techniques for checking whether enemies
are in the bounds of the active area and how they
could be pooled to boost performance. It would
also be interesting to see if the Active Area Set
could be upgraded to work with 3D games as in
its current state the system is confined to the
constraints of a 2D game.

Finally, it would be very interesting to see whether
the director could be adapted to create mood and
tension through visual effects or music. Much like
how Left 4 Dead featured a lesser known second
director that specifically dealt with audio and
music management.

The project helps to demonstrate that a director
system can in fact be implemented into more than
just the shooter genre. It hopes to raise
awareness that such a system is feasible for
deployment with many other game genres, and
that director systems can hopefully become more
commonplace in the game development scene.

10. References

Figure 1 – Booth, Michael, 2009. The Ai
Systems of Left 4 Dead. pp. 67. Available from:
https://steamcdn-
a.akamaihd.net/apps/valve/2009/ai_systems_of_
l4d_mike_booth.pdf
[Accessed 16 October 2021].

Booth, Michael. (2009). The Ai Systems of Left 4
Dead [presentation]. 17 November.
Available from:
https://steamcdna.akamaihd.net/apps/valve/200
9/ai_systems_of_l4d_mike_booth.pdf [Accessed
16 October
2021].

Csikszentmihalyi, M. (1997) Finding flow: The
psychology of engagement with

everyday life. Basic Books [online]. p.2. [11
October 2021]

Hickery (2018) Horror Ai Toolkit. Available from:
https://hickery.itch.io/unity-horror-ai-toolkit
[Accessed 26 Nov 2021].

Meyer, B. (1997) Object-oriented Software
Construction. 2nd Edition. United States: Prentice
Hall.

Monolith Productions (2005) F.E.A.R. [Video
game]. Vivendi Universal Games, Warner Bros.
Games.

Orkin, J. (2003) Applying Goal-Oriented Action
Planning to Games. AI game programming
wisdom [online]. p. 3 [Accessed 27 October
2021].

Orkin, J. (2006) Three States and a Plan: The Ai
of F.E.A.R. Game developers conference
[online]. p. 6 [Accessed 27 October 2021].

Pierce, Shay (2013) Towards a Rule-Based Game
Engine. Available from:
https://www.gamedeveloper.com/design/toward
s-a-rule-based-game-engine [Accessed 16
November 2021].

Rakib, A., Uddin, I (2018) An Efficient Rule-
Based Distributed Reasoning Framework for
Resource-bounded Systems. Mobile Networks
and Applications [online]. [Accessed 20
October 2021]

Schoenau-fog, H.S. (2011) The Player
Engagement Process – an Exploration of
Continuation Desire in Digital Games. Digra
Journal [online]. 6, p. 11. [Accessed
11 October 2021].

Thompson, T. (2020) How Spreadsheets Power
Civilian AI in Watch Dogs 2. Case Studies
[blog]. 5 November. Available from:
https://www.aiandgames.com/2020/11/05/hows
preadsheets-power-civilian-ai-in-watch-dogs-2/
[Accessed 12 November 2021].

Turtle Rock Studios (2008) Left 4 Dead. [Video
game]. Valve Corporation.

Ubisoft Montreal (2016) Watch Dogs 2. [Video
game]. Ubisoft.

Figure 6 – Whelan, Michael. (2013). Behaviour
Driven Blog. The Rules Design Pattern [blog]. 14
May. Available from:
https://www.michael-whelan.net/rules-design-
pattern/ [Accessed 19 March 2022].

Weimann, Jason. (2017). Unity3D. LINQ for Unity
Developers [blog]. 1 July. Available from:

2021/22

Charlie Evans 18009251

13

https://unity3d.college/2017/07/01/linq-unity-
developers/ [Accessed 04 April 2022].

11. Bibliography

Ai and Games (2020). Building the AI of F.E.A.R.
with Goal Oriented Action Planning | AI 101.
YouTube [video]. 06 May. Available from:
https://youtu.be/PaOLBOuyswI [Accessed 5
November 2021].

Ai and Games (2019). Behaviour Trees: The
Cornerstone of Modern Game AI | AI 101.
YouTube [video]. 02 January. Available from:
https://youtu.be/6VBCXvfNlCM [Accessed 10
December 2021].

Booth, Michael. (2009). Replayable Cooperative
Game Design: Left 4 Dead [presentation]. 17
November. Available from:
https://cdn.cloudflare.steamstatic.com/apps/valv
e/2009/GDC2009_ReplayableCooperative
GameDesign_Left4Dead.pdf [Accessed 16
October 2021].

GDC (2017). Goal-Oriented Action Planning: Ten
Years of AI Programming. YouTube [video].
09 October. Available from:
https://youtu.be/gm7K68663rA [Accessed 5
November 2021].

Ishida, T., Stolfo, S. (1984) Towards the Parallel
Execution of Rules in Production System

Programs. [online]. p. 3 [Accessed 2 December
2021].

Jacopin, E. (2014) Game Ai Planning Analytics:
The Case of Three First-Person Shooters.
Proceedings of the AAAI Conference on Artificial
Intelligence and Interactive Digital
Entertainment [online]. p. 5 [Accessed 2
November 2021].

M.Bourg, D., Seemann, G. (2004) Rule Based AI.
In: M.Bourg, D., Seemann, G. (2004) AI for
Game Developers [online]. Sebastopol: O’Reilly
Media, Inc, Chapter 11. [Accessed 26
November 2021].

Nystrom, B. (2011) Observer. In: Nystrom, B.
(2011) Game Programming Patterns [online].
Genever Benning, 2014. [Accessed 7 December
2021].

Owens, Brent (2014) Goal Oriented Action
Planning for a Smarter AI. Available from:
https://gamedevelopment.tutsplus.com/tutorials/
goal-oriented-action-planning-for-asmarter-ai--
cms-20793 [Accessed 5 November 2021].

Snowden, J., Oikonomou, A. (2011) Creating
More Entertaining and Re-Playable
Games By Dynamically Introducing and
Manipulating, Static Gameplay Elements And
Events. 2011 16th International Conference on
Computer Games (CGAMES) [online]. p. 3
[Accessed 12 December 2021]

Thompson, T. (2014) In the Director's Chair: The
AI of Left 4 Dead. Available from:
https://medium.com/@t2thompson/in-the-
directors-chair-the-ai-of-left-4-dead78f0d4fbf86a
[Accessed 16 October 2021].

Thompson, T. (2020) Revisiting the AI of Alien:
Isolation. Case Studies [blog]. 20 May.
Available from:
https://www.aiandgames.com/2020/05/20/revisi
ting-alien-isolation/
[Accessed 26 October 2021].

Thompson, T. (2021) How AI Help Achieve
Tactical Clarity in Gears Tactics. Case Studies
[blog]. 29 April. Available from:
https://www.aiandgames.com/2021/04/29/how-
ai-helpachieve-tactical-clarity-in-gears-tactics/
[Accessed 21 November 2021].

Van Fleet, Ryan. (2019). Basic Rules Engine
Design Pattern. [blog]. 12 November. Available
from:
https://tenmilesquare.com/resources/software-
development/basic-rules-engine-design-pattern/
[Accessed 18 March 2022].

Appendix A: Project Log

Charlie
Evans
18009251

A Dynamic Director Ai System for Shooter and Survival Games

Date (w/o) Task Outcome Notes

01/11/21
• Final touches to the

project proposal
Project proposal submitted

15/11/21

• Setup GitHub

repository with

directories for both

Unity game projects

Two unity projects setup and pushed to a single

GitHub repository.

2021/22

Charlie Evans 18009251

14

22/11/21

• Begin development

on the shooter game

• Design the level

environment

A tilemap was used to create the level

environment. A large level was made with a
variety of wide and narrow areas.

29/11/21

• Play around with

events using Unity’s

Action event

delegates

Unity’s built in Action delegates were played
around with and used to publish events that other
scripts could subscribe to.

Could make use of Action

events for handling the

director intensity phases.

06/12/21

• Complete the first

draft of the research

document

Sent draft to supervisor

Received some useful feedback

13/12/21

• Finish up research

document ready for

submission

Research document submitted

20/12/21

• Setup the core

director scripts

• Setup intensity

phase loop

A director script was made providing several
serialised inspector options.
Basic intensity loop was setup which dictates when

to switch to the next intensity phase

27/12/21

• Implement the first

prototype of the

Active Area Set

system

Active Area Set script was made and attached to
the Director script alongside a line renderer

component. The area circle colour and dimensions
were made customisable in the inspector.

Should provide the option to

pass in a list of enemies

03/01/22

• Generate a

pathfinding grid the

size of the active

area set that the

level environment

scans periodically

A pathfinding script was added to the director. The

pathfinding navigation grid was generated to the
size and position of the active area set bounds and

scans the level environment periodically to
generate the walkable (and spawnable) areas.

Spawned enemies can

sometimes spawn inside of

walls. Enemies could be

spawned onto tile positions of

a specific layer.

10/01/22

• Setup a ui interface

for displaying the

current state of the

director

A quick and simple ui interface was made that

exposes a range of variables from the director
such as the perceived intensity and intensity

phase.

17/01/22
• Finish prototype

showcase video

Submitted the showcase vid. The demo showed off
the Active Area Set system and customisability

options.

24/01/22
• Prepare for prototype

demo
Prototype demo submitted

07/02/22

• Begin development

on the survival game

• Mock up the level

environment

A level environment was setup using a tilemap.
Basic player movement and controls scripts made.

Inventory system?

14/02/22

• Build simple

inventory system for

survival game

A custom inventory system was designed.
Resources can be picked up and are added to a

inventory system of a fixed number of item
stacks, of which each stack can contain items of

one itemtype at a time.

21/02/22

• Continue with

development of

survival game

Further development of the inventory system and
integrating the active area set into the survival
game.

14/03/22

• Start on new rules

system based on

prototype demo

feedback

Discovered the rule engine design pattern through
the course of development on new rule system.

Allows messy and hard-to-read conditional logic to
be abstracted into their own rule scripts.

21/03/22

• Implement a system

based on the rule

engine pattern

A rule engine was setup to help calculate the

perceived intensity of the player.

Another rule engine could be

setup that determines the

behaviour or state of the

director

28/03/22

• Design some rules

for the shooter game

to test the director

A rule for checking the distance from the enemy to

the player was created.

04/04/22

• Design some rules

for the survival game

to test the director

Rules for checking the player’s health and hunger

was added. A rule was also added for checking
how full the player’s inventory is.

11/04/22
• Refactor and make

code more readable
General code-up, blocks of code refactored into
their own methods. Small code optimisations.

18/04/22

• Reconfigure director

intensity states into

its own class

Director intensity phases refactored into their
separate class. An instance of it was instantiated

within the Director script.

An event could be invoked

when there is a change in the

intensity phase state.

25/04/22

• Add the option for

the Active Area Set

to take in a tilemap

A tilemap can be passed in to the AAS via the
inspector. This layer determines the spawnable

tiles for any spawned enemies.

30/05/22
• Continue write-up of

final report

More progress made on practice section of the

report.

06/06/22
• Re-write sections of

the research findings
Research Findings sections updated with rules
pattern discovery.

2021/22

Charlie Evans 18009251

15

based on new

findings

13/06/22
• Continue with final

report

Further progress made on practice section,

updated earlier sections.

20/06/22

• Integrate the latest

director system into

the survival game

Director and rule engine scripts updated to the

changes that were made to the director within the
shooter game.

04/07/22

• Refactor all Director

sub-systems into its

own directory

Refactored director scripts to be under its own

namespace. All scripts and files related to the
director system was moved to their own directory.

Export as a package

11/07/22

• Collate the Director

project into its own

unity package

The Ai director was exported as its own unity
package. A scene was included with an example of

how to set it up. The package was uploaded to
GitHub and provided in the project release.

18/07/22

• Final touches before

final project

submission (resit)

• Update Github

repository readme

Updated github repository with information on

how to setup and run the project, along with
general information about the project.

Appendix B: Project Timeline

Charlie
Evans
18009251

A Dynamic Director Ai System for Shooter and Survival Games

Month Timeline

November
Built a simple top-down 2D shooter game

Playing around with event systems

December
Director script setup and designed

Begun development on the Active Area Set

January
Continued with the development of the Active Area Set

Project Prototype Demo

February Built a simple top-down 2D survival game

March Started work on a new rules system based on tutor feedback from the demo

April Continuing work on the rules system

May Not much work was conducted on the project during this month

June
Finalising prototypes before project submission
Collating the Director into its own unity package

July Resit submission

Appendix C: Assets used in the Project

Assets, Code and Software NOT produced by me:

• Unity Engine version 2021.1.21f, https://unity3d.com/get-unity/download/archive
• A* Pathfinding Project by Aron Granberg, https://arongranberg.com/astar/download

o Script: ‘Pathfinder’ (attached to the Director script)
• Kenney Assets Top-down shooter pack, https://kenney.nl/assets/topdown-shooter

Assets Used In The Shooter Game:

• Kenney Assets Crosshair pack, https://kenney.nl/assets/crosshair-pack
• Zombie ui pack, https://opengameart.org/content/zombie-ui-pack
• 2D Sci-fi Platform Builder, https://f0x0ne.itch.io/2d-sci-fi-platform-builder

Assets Used In The Survival Game:

• Kenney Assets Pirate Pack, https://kenney.nl/assets/pirate-pack
• Palm Tree asset, https://opengameart.org/content/palmjungle-trees-for-32x32-tileset
• Cursor asset, https://kenney.nl/assets/puzzle-pack
• Treasure chest asset
• Food icons asset pack, https://opengameart.org/content/food-icons
• RPG Crafting Material Icons, https://opengameart.org/content/rpg-crafting-material-icons
• Rocks asset pack, https://www.clipartmax.com/download/m2H7Z5H7N4d3H7K9_rock-sprite-

png-2d-rock-sprite/
• Voxel pack, https://kenney.nl/assets/voxel-pack
• Univseral Render Pipeline (URP), Built into Unity Editor, Unity Companion License

https://unity3d.com/get-unity/download/archive
https://arongranberg.com/astar/download
https://kenney.nl/assets/topdown-shooter
https://kenney.nl/assets/crosshair-pack
https://opengameart.org/content/zombie-ui-pack
https://f0x0ne.itch.io/2d-sci-fi-platform-builder
https://kenney.nl/assets/pirate-pack
https://opengameart.org/content/palmjungle-trees-for-32x32-tileset
https://kenney.nl/assets/puzzle-pack
https://opengameart.org/content/food-icons
https://opengameart.org/content/rpg-crafting-material-icons
https://www.clipartmax.com/download/m2H7Z5H7N4d3H7K9_rock-sprite-png-2d-rock-sprite/
https://www.clipartmax.com/download/m2H7Z5H7N4d3H7K9_rock-sprite-png-2d-rock-sprite/
https://kenney.nl/assets/voxel-pack

2021/22

Charlie Evans 18009251

16

• TextMeshPro, Built into Unity Editor, Unity Companion License

